
PORTFOLIO OPTIMIZATION 61

As the Markov chain progresses, we keep track of the minimal
route length observed so far and the route that produced it.

As with previous applications, a virtue of our notion of neigh-
bor is that the computation of ΔE(x, y) is easy and does not grow
in computational time as the number of sites K increases. The
dashed parts of the route in the previous figure are unchanged
(although the sites from ci to cj are toured in reverse order).
Hence we have

ΔE(x, y) =
[
d(ci−1, cj)+d(ci, cj+1)

]−[
d(ci−1, ci)+d(cj , cj+1)

]
.

Naturally one could compute E(x) and E(y) separately using (1)
and then compute the change in energy as ΔE(x, y) = E(y) −
E(x), but this would be much more time consuming.

This is implemented in RouteOptimization.cpp. This al-
gorithm produces good results when T = 0.07. At that temper-
ature, the best route found occurred at about 51 million steps
into the Markov chain and produced a route length of just 84.916
centimeters. This route may not be optimal, but it is probably
pretty close.

Route length = 84.916 cm, found at step 51,323,843

···
······················
······················
······················
······················
······················
······················
······················
··

•

•
•

•

•
•
•

•
•

•
•
•

•

•
•
•

•

•

•
•

•
•

•

•

•
•
••
•
•

•

•
•
•

•
•
•
•

•

••••
•
•

•

•
•
•

•
•

•
•

•

•
•

•
•
•
•

•

•

•

•
•

•

•

•

•
•

•

•
•

•
•
•

•
•

•
•
•
•
•
••
•
•

•
•
•

•
•
•
•
•
•
•
•

•
•
•

•
•

•
•
•
•
•
•
•

•

•

•

•
•
•••
•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•
••

•

•

•

•

•

•

•
•

•
•

•

•
•

•
•

•

•
•
•

•

•

•
•

•
•

•

•

• •
•
•

•

••

•
•

•

•
•

•

•

•

16 cm··· ···

5 cm··

················
················
················
················
··

···
··················
···············
·················
···

···
·································
···············
··································
·······························
·····························
···

························
··

···············
················
···
···············
··················
··

···
·················
··

····························
·····························
·····················
··
················
················
················
···

···············
················
···················
···················
··················
···

····················
···················
···························

···················
··························
··

·····································
·······················

··
··················
···································

··
··················
················
···················
·················
···············
···

···
················
··

··

For more on TSP go to www.math.uwaterloo.ca/tsp. See
also [Ri].

§18. Portfolio Optimization

The file V.txt contains the 50× 50 positive definite sample
covariance matrix V = (vij) for the month-to-month change in
value ΔV per 1 dollar investment for each of 50 stocks from
the S&P 100 over a five year time period. In what follows, a

62 FOUR SERIOUS APPLICATIONS

portfolio, call it x = (x1, . . . , x50)T , is a 50 × 1 column vector
whose components sum to $100. The variance of the percent
monthly return of such a portfolio is

Var (x) = xT Vx =
50∑

i=1

50∑
j=1

xivijxj .

We will use Metropolis to determine minimum variance portfolios
subject to certain types of constraints.

No Constraints. Initially we impose no constraints on the
portfolio. Both long and short positions are allowed. The only
requirement is that the components sum to 100. Simple qua-
dratic programming addresses this problem. In particular, the
minimum variance portfolio is x∗ = 100 · 1

c ·V−1e, where e50×1 =
(1, 1, . . . , 1)T and c = eT V−1e (see [LX], e.g.).

The set of all portfolios has a continuum of values, so to
employ Metropolis we must discretize the state space. With ε =
0.001, we’ll take

S =
{
x = (x1, . . . , x50)T : each xi ∈ ε× Z and

∑
i

xi = 100
}
,

so, for example, 10.552 is a legitimate portfolio component but
10.5526 is not. This state space, while discrete, is now countably
infinite. That will not be a problem, however, as Var (x) grows
like ||x||2 and the Markov chain will not wander outside of a
bounded region of S. As for the notion of neighbor, we’ll say
that x↔ y if, for some two components i �= j we have yi = xi +ε
and yj = xj − ε, with xk = yk for k �= i or j. The Markov chain
will alter portfolio composition bit-by-bit. This notion is easily
seen to comply with the good neighbor rules — in particular, each
state has 50×49 = 2,450 neighbors. We will take E(x) = Var (x),
the quantity we seek to minimize.

About the Temperature Parameter. Suppose x �= y are any
two distinct portfolios — they are permitted to have both long
and short positions. Then p = λx+(1−λ)y is another portfolio
for any real number λ. A little algebra shows that Var (p) is
quadratic in λ — of the form aλ2 + bλ+ c for some real numbers
b, and c and with a = Var (x − y) = (x − y)T V(x − y). Since

PORTFOLIO OPTIMIZATION 63

x − y �= 0 and V is positive definite we see that a > 0. Hence
Var (p) is minimized for a unique value of λ and x and y cannot
both be local minima for Var (·). It follows that there are no
stable states in S (other than the global minimum) and we may
safely use the zero-temperature dynamics: we’ll take T = 0. In
this application we don’t know the minimal variance in advance.
However, we do know that the global minimum is the only stable
state. We’ll run the Markov chain testing periodically if we’re at
a stable state and stop when we find one.

This is implemented in NoConstraints.cpp. The resulting
Metropolis portfolio (variance = 0.45442) is shown below. The
true optimal x∗ (also with variance = 0.45442) agrees at every
component to within a few pennies.

Portfolio composition with no constraints

MS 14.72 PCLN -12.83
RTN 24.70 HD -7.86
OXY 16.82 MDT 7.57
TWX -2.19 PFE -35.93
F 16.24 CAT -16.75
AIG -0.71 JNJ -51.19
ACN -22.50 GOOGL -12.11
HON 8.59 CELG -2.92
QCOM 26.23 NEE 30.56
BA -17.87 DD -0.16
UNH -4.98 WFC -0.38
PG -2.65 KHC 1.18
HAL 20.57 CVX 4.53
INTC -8.49 MMM 9.69
BLK -13.11 MSFT 0.22
UPS 4.14 FDX 13.52
UNP -9.20 VZ 24.93
V 17.29 KO 12.36
NKE 8.24 TGT 24.58
BIIB 6.31 WBA -14.64
SLB -16.70 MCD 15.07
COST -4.10 CVS -13.63
SPG 12.96 KMI -4.25
MO 6.49 LLY 31.18
AMZN 8.10 GD 8.38

64 FOUR SERIOUS APPLICATIONS

No Short Positions. Here we insist that each component
xi of the solution is non-negative. We implement this not by
restricting the state space S but rather by modifying the energy
function. Specifically, we take

E(x) =
{

Var (x) if all components of x are non-negative,
+∞ otherwise.

With this penalty for possessing a negative component (1,000 in
the C code), such portfolios are precluded from being visited by
the Markov chain. This is implemented in NoShorts.cpp. Again
we may take T = 0 (if x and y are portfolios with no short
positions so is p = λx + (1 − λ)y for 0 ≤ λ ≤ 1). The resulting
portfolio, with a variance of 4.02856, is given below.

Portfolio composition with no short positions

RTN 7.86
OXY 8.03
F 3.59
UNH 4.15
PG 1.96
UNP 4.36
NKE 10.27
BIIB 1.37
NEE 14.09
WFC 1.85
KHC 2.44
MSFT 2.50
FDX 4.53
VZ 12.05
TGT 3.31
KMI 1.50
LLY 15.57
GD 0.58

As with the no constraints case, more traditional quadratic
programming produces virtually the same result.

“Simple” portfolios only. Let us call a portfolio of these
50 stocks “simple” if all the stocks present in the portfolio have
equal weight (e.g., 20 stocks with weight $5.00 each). Here we

PORTFOLIO OPTIMIZATION 65

seek the simple portfolio with minimal variance. In this setting
quadratic programming methods let us down.

Metropolis Implementation. Here the implementation is dif-
ferent from the previous two applications. We take

S =
{
x = (x1, . . . , x50)T : each xi ∈ {0, 1}},

where xi = 1 indicates that the ith stock is present in the portfolio
while xi = 0 indicates that it is not. Here |S| = 250 ≈ 1.13×1015.
Of course one “portfolio” in S is not legitimate, namely when all
xi = 0. We reflect this in the energy function rather than by
deleting it from S. Regarding the notion of neighbor, we’ll say
that x ∼ y if they differ at exactly one component. This ensures
that the good neighbor rules hold — in particular, each state has
N = 50 neighbors.

Let n(x) denote the number of stocks present in x. To get
the components to sum to 100 (when n(x) �= 0), we must scale
them by a factor of 100/n(x), yielding

Var (x) =
(

100
n(x)

)2

xT Vx. (3)

We take the energy function to be

E(x) =
{

Var (x) as in (3) if n(x) �= 0,
+∞ if n(x) = 0,

thus penalizing the “portfolio” (0, . . . , 0)T so that the Markov
chain will not visit that state.

Here the temperature parameter cannot be taken to be zero
or the Markov chain will settle on a stable state that is not op-
timal. The above argument for zero temperature fails because
p = λx + (1 − λ)y is not generally a simple portfolio even if
x and y are simple. A temperature of T = 0.1 seems to work
well in this setting and the resulting portfolio, with a variance of
4.45182 is given below.

·

66 FOUR SERIOUS APPLICATIONS

Simple portfolio composition

RTN 12.50
OXY 12.50
UNH 12.50
NKE 12.50
NEE 12.50
FDX 12.50
VZ 12.50
LLY 12.50

This is implemented in Simple.cpp. Try running the code at
zero temperature. It will typically land on a stable state that is
not optimal.

§19. Data Clustering

A common task in data analysis involves grouping numerous
items of data into smaller clusters having similar features. In the
hypothetical example we consider here, 500 high school seniors
have taken SAT tests. Their guidance counselor seeks to group
them into 20 clusters having similar test scores — presumably for
purposes of offering similar advice to students with similar scores.
The SAT comprises two tests: Mathematics and Evidence-Based
Reading and Writing (Math and EBRW). They are each scored
from 200 to 800 in increments of 10. Here an item of data is an
ordered pair (xi, yi), where xi is student i’s Math score and yi

is the EBRW score. The scatter plot below shows this data for
our hypothetical class. The Math average score is 522 and the
EBRW average is 530 (typical of the country as a whole) with a
correlation of roughly 0.7 (also typical).

K-clustering is a common approach to problems like this.
(The K refers to the number of clusters, so here K = 20.) Let
D = {(xi, yi) : 1 ≤ i ≤ N} denote the N items of data; here
N = 500. Partition D into K non-empty disjoint subsets Dk,
1 ≤ k ≤ K. We seek to minimize the quantity

E =
K∑

k=1

Ek, (4)

