
38 PUZZLING APPLICATIONS

• Otherwise, if AcceptTransition == 0: keep the
current x and E

• Repeat (go back to �) as needed.

§12. First Application: Sudoku Solver

In this application we will use the Metropolis algorithm to
solve Sudoku puzzles. As we’ll see in the next section, there are
more direct ways to solve these puzzles, but applying Markov
chain methods here is fun.

Sukoku puzzles work as follows. On a 9 × 9 grid, several
sites are populated with the digits {1, 2, . . . , 9}. Your task is to
populate the remainder of the grid (the “solved-for” grid sites)
with these nine digits in such a way that: each column has no
digit repetitions; each row has no repetitions; and each of the
highlighted 3 × 3 blocks has no repetitions. A puzzle and its
unique solution are shown below.

·····················································································································································································································································································

·····················································································································································································································································································

······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
·············

······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
·············

···············································································································································································································································································································
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
·································································································································································································································································································································································································································································································································································································

6 3
2 9

4 7 5 1 9
6 9 5

9 2 7
8 3 5
6 1 8 9 4

4 1
2 3

Puzzle

·····················································································································································································································································································

·····················································································································································································································································································

······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
·············

······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
·············

···············································································································································································································································································································
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
·································································································································································································································································································································································································································································································································································································

9 6 5 2 4 7 8 1 3
3 1 2 9 6 8 5 4 7
4 8 7 3 5 1 2 6 9
7 2 4 8 1 6 3 9 5
1 5 9 4 2 3 7 8 6
8 3 6 5 7 9 4 2 1
6 7 3 1 8 2 9 5 4
5 9 8 6 3 4 1 7 2
2 4 1 7 9 5 6 3 8

Solution

Metropolis solves the puzzle by simulating a Markov chain
via Monte Carlo. The state space S consists of all possible ways
to assign the digits {1, 2, 3, . . . , 9} to the grid sites that must be
solved for. (The clue sites remain fixed.) This puzzle has 27 clues
and 81 − 27 = 54 solved-for sites. Since each solved-for site can
assume 9 possible values, there are 954 ≈ 3.38× 1051 states in S.
That’s a huge number. Imagine the PTM! Most states are very
far from the solution, like the one below at the left. States like
this will be assigned a high energy. A relatively small number of
states are close to the solution, like the one below at the right



SUDOKU SOLVER 39

where only the three starred sites differ from the solution. States
like this will be assigned a low energy.

·····················································································································································································································································································

·····················································································································································································································································································

······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
·············

······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
·············

···············································································································································································································································································································
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
·································································································································································································································································································································································································································································································································································································

1 6 1 1 1 1 1 1 3
1 1 2 9 1 1 1 1 1
4 1 7 1 5 1 1 1 9
1 1 1 1 1 6 1 9 5
1 1 9 1 2 1 7 1 1
8 3 1 5 1 1 1 1 1
6 1 1 1 8 1 9 1 4
1 1 1 1 1 4 1 1 1
2 1 1 1 1 1 1 3 1

High Energy State

·····················································································································································································································································································

·····················································································································································································································································································

······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
·············

······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
·············

···············································································································································································································································································································
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
·································································································································································································································································································································································································································································································································································································

6∗ 6 5 2 4 7 8 1 3
3 1 2 9 6 3∗ 5 4 7
4 8 7 3 5 1 2 6 9
7 2 4 8 1 6 3 9 5
1 5 9 7∗ 2 3 7 8 6
8 3 6 5 7 9 4 2 1
6 7 3 1 8 2 9 5 4
5 9 8 6 3 4 1 7 2
2 4 1 7 9 5 6 3 8

Low Energy State

The Markov chain is constructed so that its invariant distri-
bution μ is concentrated on states close to the solution — those
with low energy. These states are represented below by the small
dots; the big dot represents the solution. As the Markov chain
is simulated, it converges to the invariant distribution. At this
point, the Markov chain is sampling from a relatively limited
number of states close to the solution. It eventually lands on
the solution, at which point simulation stops and the result is
reported.

············································································································································································································································································································································································································································································································
······················
······················
······················
······················
······················
······················
······················
······················
······················
······················
······························································································································································································································································································································································································································································································································································································································································································································································

S = {all 3.38× 1051 states}

•
·
·
·
··

· · ····
·· ··· ····

··
···

·· ·
·· · ··
·
···

·· ·
·· ·· ··· ·· ··· ·

·
·
· ·
· ·
· ·
···

·
· · ··
·

·
·

·
·

· ··

·
·
·

··
··
·
···

· ···
··

·

·

·
··

·
· μ is concentrated

on these states
·················································

We have already specified the state space:

S = {all possible assignments of the digits 1 – 9

to the solved-for sites}.

Regarding the energy function E(·), we will call a pair of two



40 PUZZLING APPLICATIONS

(distinct) grid sites in conflict if they are in the same row, col-
umn, or 3× 3 block and they are allocated the same digit in the
configuration. For any configuration x, E(x) reflects the number
of pairs of grid sites that are in conflict: any pair that involves
only non-clue sites contributes 1 to E(x); any pair where one of
the sites is a clue site contributes 5 to E(x). The penalty of 5 is
arbitrary, but it reflects the fact that a conflict with a clue must
be wrong (I learned this trick from Anik Roy, a former student).

For example, if x is the close-to configuration above, we have
E(x) = 20: the 6 has two conflicts with clues (that’s 10); the 3
has three conflicts with non-clues (that’s 3 more); and the 7 has
one conflict with a clue and two conflicts with non-clues (that’s 7
more). (The far-from configuration above has an energy of 556.)
There is only one ground state (the solution) and the energy of
the ground state is 0.

Finally, call two configurations neighbors if they agree ev-
erywhere except for one grid site, where they disagree. (The site
where they disagree must be a non-clue site, as all configurations
agree at the clue sites.)

First we demonstrate that this notion of neighbor satisfies
the good neighbor rules of Chapter 3:

(i) x �↔ x;
(ii) each state has the same number of neighbors, call it N ;
(iii) x↔ y =⇒ y ↔ x; and
(iv) for any two states x and y, there is a neighbor-to-

neighbor walk from x to y.

The first is clear: x↔ y means they differ at one site, so x �=
y. As for (ii), in the above puzzle, for example, each configuration
has N = 54×8 = 432 neighbors. (Choose one of the 54 solved-for
sites and change its digit to one of the 8 other digits.) As for
(iii), if y differs from x at one site then x differs from y at one
site. Regarding (iv), one can go from any configuration to any
other configuration by changing one site at a time.

The algorithm starts with a randomly selected configuration.
This is arbitrary. By Fact 2 of Chapter 1, the Markov chain
will converge to its invariant distribution regardless of how it’s
started. Suppose after n steps of the Markov chain the config-
uration is x whose energy is E. One of x’s N neighbors, call it



SUDOKU SOLVER 41

y, is selected randomly as discussed above. If ΔE(x, y) ≤ 0
we accept the transition. Otherwise, if T > 0, we calculate
p = exp

(
−ΔE(x,y)

T

)
< 1 and generate a fresh uniform U ∼

Uniform (0, 1), i.e. one that is independent of previous uniforms.
(For all eight applications here we use the Mersenne Twister as
our random number generator — see [MN].) If U ≤ p (which
happens with probability p) we accept the transition. If we ac-
cept the transition, take new x = y and new E = E + ΔE(x, y);
otherwise we keep x and E, so new x = current x, and new
E = current E. When we eventually have E(x) = 0 we stop the
Markov chain — we have found the solution.

One way to compute ΔE(x, y) is to compute E(y) and put
ΔE(x, y) = E(y) − E(x). In this application, computing the
energy of a state is computationally expensive (time intensive).
These Markov chains run for hundreds of thousands (sometimes
millions) of steps and if this is done at every step things add
up! Sometimes (as in this example) there is a shortcut to com-
puting ΔE(x, y). The code SudokuSolver.cpp includes a func-
tion int Conflicts (int r, int c, int d) which computes,
in the current x configuration, the conflicts with the row r, col-
umn c, site if the digit at that site is d. If, for example, going
from x to y involves changing the digit at row 6, column 3, from
a 1 to a 5, then

ΔE(x, y) = Conflicts(6,3,5)-Conflicts(6,3,1).

These calculations involve sites only in row 6 and column 3 and
the block containing site (6, 3). Computing E(y), by contrast,
involves all 81 grid sites. With this approach, only the energy E
of the original state must be computed. At each step, we compute
ΔE(x, y) directly and, if the transition is accepted, update the
energy by simply adding ΔE(x, y) to the current energy.

The selection of the temperature T can be a tricky business.
The figure below shows the average time in seconds (the •s) it
takes for the algorithm to repeatedly solve 50 randomly selected
puzzles for various temperatures T with 0.34 ≤ T ≤ 0.44 (out-
side of this range run-time increases dramatically). Since these
average times were computed via Monte Carlo simulation, 95%
confidence intervals for the results are also shown (the vertical



42 PUZZLING APPLICATIONS

bars). A quadratic OLS regression is superimposed which min-
imizes at T ≈ 0.39. Those working with artificial intelligence
would call this “training” the model’s one parameter.

0.12

0.14

0.16

0.18

0.20

0.22

0.34 0.36 0.38 0.40 0.42 0.44

Temperature

•

•

• •

•

•···············································································································································································································································································································································································································
············································
··································
····························
·························
·······················
·····················
··································

······················
··

·····················
··

·················· ·····················
······················
·····

······················
················

Mean CPU time in seconds per solution

This algorithm is implemented in SudokuSolver.cpp, where you
are invited to tinker with the temperature parameter. The pro-
gram reads in a .txt data file that describes the puzzle to be
solved. For the puzzle above, that file looks like

0 6 0 0 0 0 0 0 3
0 0 2 9 0 0 0 0 0
4 0 7 0 5 1 0 0 9
0 0 0 0 0 6 0 9 5
0 0 9 0 2 0 7 0 0
8 3 0 5 0 0 0 0 0
6 0 0 1 8 0 9 0 4
0 0 0 0 0 4 1 0 0
2 0 0 0 0 0 0 3 0,

where the non-zero digits are the clues and the zeros are at the
solved-for sites. In the next section you will learn how to gener-
ate additional puzzles of varying degrees of difficulty to test this
program.

§13. Making Sudoku Puzzles

In §12 we saw how to use Metropolis to solve Sudoku puzzles.
Solving these puzzles may be hard (for a human), but making up
Sudoku puzzles is harder! The set of clues must obviously have
a solution, but the solution must also be unique. Here we de-
scribe a procedure for generating puzzles that uses Metropolis in
two stages. Web sites like websudoku.com that generate puzzles


