
Chapter 1

First Look: Fifteen Questions.

1. Nine months call options with strikes 20 and 25 on
a non–dividend–paying underlying asset with spot
price $22 are trading for $5.50 and $1, respectively.
Can you find an arbitrage?

2. (i) What is the sum of the eigenvalues of the corre-
lation matrix of n random variables?

(ii) Find a lower bound for the sum of the eigenval-
ues of the inverse of a nonsingular correlation matrix
of n random variables.

3. Let Wt be a Wiener process, and let

Xt =

Z t

0

Wτ dτ.

What is the distribution of Xt? Is Xt a martingale?

4. An 8 × 8 matrix contains zeros and ones. You may
repeatedly choose any 3× 3 or 4× 4 block and flip
all bits in the block (that is, convert zeros to ones,
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2 CHAPTER 1. FIRST LOOK: 15 QUESTIONS

and ones to zeros). Can you always modify the orig-
inal matrix into an all–zero matrix using these block
flips?

5. Find all the values of ρ such that0@ 1 0.6 −0.3
0.6 1 ρ
−0.3 ρ 1

1A
is a correlation matrix.

6. Given a sample of size 1 from the normal distribu-
tion with mean μ and variance σ2, with both μ and
σ are unknown, give a finite confidence interval for
σ2 with confidence level at least 99%.

7. How would you generate uniformly distributed points
on the surface of the 3-dimensional unit sphere?

8. Assume the Earth is perfectly spherical and you are
standing somewhere on its surface. You travel ex-
actly 1 mile south, then 1 mile east, then 1 mile
north. Surprisingly, you find yourself back at the
starting point. If you are not at the North Pole,
where can you possibly be?!

9. Solve the Ornstein-Uhlenbeck SDE

drt = λ(θ − rt)dt + σdWt,

with λ > 0, which is used, e.g., in the Vasicek model
for interest rates.
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10. Find all the integer solutions of the equation

x3 + y3 = 2013.

11. Let X and Y be standard normal variables with joint
normal distribution with correlation ρ. Find the ex-
pectation

E [sgn(X)sgn(Y )] ,

where sgn(·) is the sign function given by sgn(x) = 1,
if x > 0, sgn(x) = −1, if x < 0, and sgn(0) = 0.

12. How do you create a long Gamma, short vega op-
tions trading strategy?

13. Let Xt and Yt be geometric Brownian motions driven
by

dXt

Xt
= μXdt + σXdWt;

dYt

Yt
= μY dt + σY dBt,

where Wt and Bt are correlated Brownian motions
with constant correlation ρ. Show that

Zt =
Xt

Yt

is also a geometric Brownian motion and determine
its drift and volatility coefficients.

14. Find the k–th largest element in an unsorted array.
Assume that k is always valid, i.e., k ≥ 1 and k is
less than or equal to the length of the array.
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Note: You are looking for the k–th largest element
in the sorted order, not the k–th distinct element of
the array.

Example 1:

Input: [3,2,1,5,6,4] and k = 2

Output: 5

Example 2:

Input: [3,2,3,1,2,4,5,5,6] and k = 4

Output: 4

15. Given an array nums, there is a sliding window of
size k which is moving from the very left of the array
to the very right of the array. You can only see the
k numbers in the window. Each time the sliding
window moves right by one position. Assume that k
is always valid, i.e., k ≥ 1 and k is less than or equal
to the size of the input array size for non-empty
arrays.

Write an algorithm that returns the maximum of
the sliding window.

Example:

Input: nums = [1,3,-1,-3,5,3,6,7], and k = 3

Output: [3,3,5,5,6,7]

Explanation:

Window Position Max

-------------------------- -----

[1 3 -1] -3 5 3 6 7 3



5

1 [3 -1 -3] 5 3 6 7 3

1 3 [-1 -3 5] 3 6 7 5

1 3 -1 [-3 5 3] 6 7 5

1 3 -1 -3 [5 3 6] 7 6

1 3 -1 -3 5 [3 6 7] 7

.
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Solutions

Question 1. Nine months call options with strikes 20
and 25 on a non–dividend–paying underlying asset with
spot price $22 are trading for $5.50 and $1, respectively.
Can you find an arbitrage?

Answer: Note that a call option with strike 0 on a non–
dividend–paying underlying asset is the same as one unit
of the asset, since the call with strike 0 will always be
exercised at maturity by paying $0, i.e., the strike of the
option, to receive one unit of the asset. Thus, we are
implicitly given a third call option with strike K = 0 and
price $22 (i.e., the spot price of the asset), and we can
proceed to identify whether there is convexity arbitrage
for these three call options.

Let K1 = 0, K2 = 20, K3 = 25 and C1 = 22, C2 =
5.50, C3 = 1. Note that 20 = 1

5 · 0 + 4
5 · 25, i.e.,

K2 =
1

5
K1 +

4

5
K3.

Since
1

5
C1 +

4

5
C3 = 5.20 < 5.50 = C2, (1.1)

the convexity of option prices with respect to strike is
violated.

The arbitrage strategy is to “buy low” 1
5
C1 + 4

5
C3 and

“sell high” C2. To normalize units, we multiply the po-
sitions by 500 to obtain the following arbitrage strategy:
“buy low” 100C1 + 400C2 and “sell high” 500C2. Note
that buying 100C1 , i.e., 100 calls with strike K1 = 0,
is equivalent to buying 100 units of the underlying asset
since the asset does not pay dividends.

Arbitrage Strategy:
• buy 100 units of the underlying asset for $2,200;
• buy 400 calls with strike K3 = 25 for $400;
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• sell 500 calls with strike K2 = 20 for $2,750;
• realize a positive cash flow of $150.

The positive cash flow $150 represents risk–free profit
since the arbitrage portfolio does not lose money at ma-
turity:

The value of the arbitrage portfolio at the maturity T of
the options is

V (T ) = 100S(T ) − 500C2(T ) + 400C3(T )

= 100S(T ) − 500 max(S(T ) − 20, 0)

+ 400 max(S(T ) − 25, 0).

If S(T ) ≤ 20,

V (T ) = 100S(T ) ≥ 0.

If 20 < S(T ) ≤ 25,

V (T ) = 100S(T ) − 500(S(T ) − 20)

= 10000− 400S(T )

≥ 0.

If 25 < S(T ),

V (T ) = 100S(T ) − 500(S(T ) − 20)

+ 400(S(T ) − 25)

= 0.

Note that 150 = 500 · (5.50 − 5.20), i.e., the risk–free
profit $150 is equal to the size of the convexity disparity
$5.50− $5.20 times the amplifier factor 500. �

Question 2. (i) What is the sum of the eigenvalues of
the correlation matrix of n random variables?

(ii) Find a lower bound for the sum of the eigenvalues
of the inverse of a nonsingular correlation matrix of n
random variables.
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Answer: (i) The sum of the eigenvalues of a matrix is
equal to the trace of the matrix, i.e., to the sum of the
main diagonal entries of the matrix.1 Since the correla-
tion matrix of n random variables is an n×n matrix with
all main diagonal entries equal to 1, the trace of the cor-
relation matrix is equal to n. We conclude that the sum
of the eigenvalues of the correlation matrix of n random
variables is n.

(ii) If λ1, λ2, . . . , λn are the eigenvalues of the nonsingular
n× n correlation matrix Ω, then λi > 0 for all i = 1 : n,
since a nonsingular correlation matrix is symmetric pos-
itive definite. The eigenvalues of the inverse matrix Ω−1

are 1
λ1

, 1
λ2

, . . . , 1
λn

. Thus, the question asks us what
could be said about the sum

nX
i=1

1

λi

of the eigenvalues of Ω−1.

Recall from (i) that the sum of the eigenvalues of the
correlation matrix Ω is n, i.e.,

nX
i=1

λi = n. (1.2)

Also, recall from the Cauchy–Schwartz inequality that 
nX

i=1

a2
i

!  
nX

i=1

b2i

!
≥
 

nX
i=1

aibi

!2

. (1.3)

Since λi > 0 for all i = 1 : n, we can use the Cauchy–
Schwartz inequality (1.3) for ai =

√
λi and bi = 1√

λi

,

1This property follows from the fact that the eigenvalues of a
matrix A are the roots of the characteristic polynomial PA(t) =
det(tI − A) of the matrix A; see, e.g., Theorem 4.1 from Stefan-
ica [5].
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i = 1 : n, to obtain that 
nX

i=1

λi

!  
nX

i=1

1

λi

!
≥
 

nX
i=1

1

!2

= n2, (1.4)

since a2
i =

`√
λi

´2
= λi, b2i =

„
1√
λi

«2

= 1
λi

, and aibi =
√

λi · 1√
λi

= 1, for all i = 1 : n.

From (1.4) and using (1.2), we find that

n

 
nX

i=1

1

λi

!
≥ n2

and therefore conclude that

nX
i=1

1

λi
≥ n.

In other words, the sum of the eigenvalues of the inverse
of a nonsingular correlation matrix of n random variables
is bounded from below by n. �

Question 3. Let Wt be a Wiener process, and let

Xt =

Z t

0

Wτ dτ. (1.5)

What is the distribution of Xt? Is Xt a martingale?

Answer: Note that we can rewrite (1.5) in differential
form as

dXt = Wtdt = Wtdt + 0dWt.

Then, Xt is a diffusion process with only drift part Wt,
and therefore Xt is not a martingale.

We use integration by parts to find the distribution of
Xt; a different solution can be found in Section 3.7.
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By applying integration by parts, we obtain that

Xt =

Z t

0

Wτ dτ

= tWt −
Z t

0

τdWτ

= t

Z t

0

dWτ −
Z t

0

τdWτ

=

Z t

0

(t− τ)dWτ .

Recall that, if f(t) is a deterministic square integrable
function, then the stochastic integral

R t

0
f(τ)dWτ is a nor-

mal random variable of mean 0 and variance
R t

0
|f(τ)|2dτ ,

i.e., Z t

0

f(τ)dWτ ∼ N

„
0,

Z t

0

|f(τ)|2dτ

«
.

Thus,

Xt =

Z t

0

(t− τ)dWτ

∼ N

„
0,

Z t

0

(t − τ)2 dτ

«
= N

„
0,

t3

3

«
.

We conclude that Xt is a normal random variable of mean
0 and variance t3

3
. �

Question 4. An 8 × 8 matrix contains zeros and ones.
You may repeatedly choose any 3 × 3 or 4× 4 block and
flip all bits in the block (that is, convert zeros to ones,
and ones to zeros). Can you always modify the original
matrix into an all–zero matrix using these block flips?

Answer: No! Note that all the block flips are reversible,
so it will suffice to show that there exist 8× 8 matrices M
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containing zeroes and ones that cannot be obtained using
the block flips starting from an all–zero matrix.

Given a multiset of 3× 3 and 4× 4 blocks to be flipped
in some order, the final matrix obtained is independent of
the order in which the flips of the blocks in the multiset
are applied. Moreover, we can remove all the block repe-
titions; in other words, we can reduce the multiset of the
blocks flipped to a set with no repeated blocks by recog-
nizing that flipping the same block twice does not affect
the final matrix obtained at the end.

The total number of 3×3 blocks in an 8×8 matrix is 36:
the upper left corner of the 3× 3 block cannot be located
in the 7–th or 8–th row or in the 7–th or 8–th column
of the 8 × 8 matrix and therefore there are 6 × 6 = 36
possible positions for it. Similarly, the total number of
4×4 blocks in an 8×8 matrix is 25: the upper left corner
of the 4 × 4 cannot be located in the 6–th, 7–th or 8–th
row or in the 6–th, 7–th or 8–th column of the 8×8 matrix
and therefore there are 5 × 5 = 25 possible positions for
it.

Thus, there are 36+25 = 61 blocks that can be flipped
and the total number of different sets of blocks made with
these 61 blocks (with no repeated blocks) is 261. Then,
starting with an all–zero matrix, we can obtain at most
261 distinct matrices. Since the total number of 8 × 8
matrices containing zeros and ones is 264, it follows that
there exist matrices that cannot be obtained starting from
an all–zero matrix by using block flips. �

Question 5. Find all the values of ρ such that0@ 1 0.6 −0.3
0.6 1 ρ
−0.3 ρ 1

1A
is a correlation matrix.
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Answer: A symmetric matrix with diagonal entries equal
to 1 is a correlation matrix if and only if the matrix is
symmetric positive semidefinite. Thus, we need to find all
the values of ρ such that the matrix

Ω =

0@ 1 0.6 −0.3
0.6 1 ρ
−0.3 ρ 1

1A (1.6)

is symmetric positive semidefinite.

We give a short solution using Sylvester’s criterion.
Two more solutions, one using the Cholesky decomposi-
tion, and another one based on the definition of symmetric
positive semidefinite matrices will be given in Section 3.2.

Recall from Sylvester’s criterion that a matrix is sym-
metric positive semidefinite if and only if all its principal
minors are greater than or equal to 0. Also, recall that
the principal minors of a matrix are the determinants of
all the square matrices obtained by eliminating the same
rows and columns from the matrix. In particular, the
matrix Ω from (1.6) has the following principal minors:

det(1) = 1; det(1) = 1; det(1) = 1;

det

„
1 0.6

0.6 1

«
= 0.64;

det

„
1 −0.3

−0.3 1

«
= 0.91;

det

„
1 ρ
ρ 1

«
= 1− ρ2;

det(Ω) = 1− 0.36ρ− 0.09− 0.36− ρ2

= 0.55− 0.36ρ− ρ2.
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Thus, it follows from Sylvester’s criterion that Ω is a
symmetric positive semidefinite matrix if and only if

1− ρ2 ≥ 0;

0.55− 0.36ρ− ρ2 ≥ 0,

which is equivalent to −1 ≤ ρ ≤ 1 and

ρ2 + 0.36ρ− 0.55 ≤ 0. (1.7)

Since the roots of the quadratic equation corresponding
to (1.7) are −0.9432 and 0.5832, we conclude that the
matrix Ω is symmetric positive semidefinite, and therefore
a correlation matrix, if and only if

−0.9432 ≤ ρ ≤ 0.5832. � (1.8)

Question 6. Given a sample of size 1 from the normal
distribution with mean μ and variance σ2, with both μ
and σ are unknown, give a finite confidence interval for
σ2 with confidence level at least 99%.

Answer: Denote by X the single observation from the
normal distribution with mean μ and variance σ2, where
both μ and σ are unknown. We construct a confidence in-
terval [0, T (X)] for σ2, where T (·) denotes some statistic.
This interval will be a confidence interval with confidence
level at least 99% if for every μ and σ2 > 0:

Pμ,σ2

`
σ2 > T (X)

´
< 0.01.

Note that the probability density function fX(x) of X
satisfies

fX(x) =
1√
2π σ

e
− (x−μ)2

2σ2 ≤ 1√
2π σ

, ∀ x ∈ R.

Then, for every a ≥ 0, we have that

P (|X | ≤ a) =

Z a

−a

fX(x) dx ≤ 2a√
2π σ

≤ a

σ
. (1.9)
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By letting a = 0.01σ in (1.9) we obtain that

P (|X | ≤ 0.01σ) ≤ 0.01. (1.10)

Note that

P (|X | ≤ 0.01σ) = P
`
X2 ≤ 0.0001σ2´

= P
`
σ2 ≥ 10000X2´ . (1.11)

From (1.10) and (1.11), we find that

P
`
σ2 ≥ 10000X2´ ≤ 0.01.

We conclude that
ˆ
0, 10000X2

˜
is a finite confidence in-

terval for σ2 with confidence level at least 99%. �

Question 7. How would you generate uniformly dis-
tributed points on the surface of the 3-dimensional unit
sphere?

Answer: We will describe two different methods to ac-
complish this task.

Method 1: Spherical coordinates provide a mapping from
every point P (x, y, z) on the surface of the 3-dimensional
unit sphere to a pair of angles (θ, φ), where θ ∈ [0, 2π] is
the azimuthal angle and φ ∈ [0, π] is the polar angle, via
transformations: x = sin (φ) cos (θ), y = sin (φ) sin (θ),
z = cos (φ).

A tempting way to try generating uniformly distributed
points on the surface of the 3-dimensional unit sphere
would be to generate both θ and φ angles uniformly at
random from their respective intervals, and then apply
the transformation above. However, this algorithm is in-
correct, as the points generated by it will be clustered
around the poles (φ = 0 and φ = π) while sparse around
the equator (φ = π/2).

Why is that so? The reason is that the Jacobian of the
transformation above is equal to sin (φ). In other words,
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the differential surface element dA in spherical coordinates
is not dφ dθ, but rather sin (φ)dφdθ. So, close to the poles
of the sphere (i.e., when φ = 0 or φ = π), the differential
surface element gets smaller as sin (φ)→ 0.

Our task is, hence, a bit more delicate: we have to find
and then draw samples from a probability distribution
with joint density f(θ, φ) that maps from the (θ, φ)–plane
to a uniform distribution on the unit sphere. Since for
every P (x, y, z) on the surface of the 3-dimensional unit
sphere f(P ) has to be constant for a uniform distribution,
we obtain that f(P ) = 1

4π
, since the surface area of the

unit sphere is 4π. Therefore,

f(P ) dA =
1

4π
dA = f(θ, φ) dθ dφ.

Since dA = sin (φ)dφ dθ, it follows that

f(θ, φ) =
1

4π
sin (φ).

Integrating the joint density f(θ, φ) to get the marginal
densities of θ and φ separately, we find that

f(θ) =

Z π

0

f(θ, φ) dφ =
1

2π
,

f(φ) =

Z 2π

0

f(θ, φ) dθ =
sin (φ)

2
.

Clearly, θ is uniformly distributed over [0, 2π], and,
hence, θ can be sampled as 2π times the output from a
readily available uniform random generator in [0, 1]. How
do we, however, use the same generator to sample φ from
a probability distribution with density f(φ) = sin (φ)

2
? We

use the inverse transform sampling method.
Note that the cumulative distribution function (cdf)

for the distribution of φ is

F (φ) =

Z φ

0

f(s) ds =
1

2
(1− cos (φ)) .
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The function F (φ) is strictly increasing from [0, π] to [0, 1],
and, as such, has an inverse function F−1(u) given by

F−1(u) = arccos (1− 2u).

Let U ∼ U [0, 1] be uniformly distributed over [0, 1].
Then,

P (U ≤ F (φ)) = F (φ),

and

P
`
F−1(U) ≤ φ

´
= F (φ).

Therefore, F (φ) is the cdf of the random variable F−1(U).
In other words, F−1(U) has the same probability dis-
tribution as φ. Hence, to sample φ from a probabil-
ity distribution with density f(φ) = sin (φ)

2
, we generate

a uniform random number U from [0, 1] using a readily
available uniform random generator, then compute φ =
arccos (1− 2U).

Finally, once we have sampled θ and φ, then x, y, and
z are computed using the spherical transformation.

Method 2: Assume that we have available a random gen-
erator from the standard normal distribution, such as the
Box–Muller method; see, e.g., Glasserman [2]. Generate
three dependent standard normally distributed numbers
X , Y , and Z to form a vector 	v = (X,Y, Z). Intu-
itively, this vector will point in a uniformly random di-
rection in the 3-dimensional space. Next, we normalize
the vector by dividing it by its norm, to obtain the point

P =
“

X
‖�v‖ ,

Y
‖�v‖ ,

Z
‖�v‖

”
on the unit sphere. In order to show

that P is uniformly distributed on the surface of the unit
sphere, it suffices to prove that 	v truly points in a uni-
formly random direction.

As X , Y , and Z are each sampled independently from
the standard normal distribution, the probability den-
sity function of (X, Y, Z) is given by the product of their
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marginal densities:

f(x, y, z) = f(	v)

=

„
1√
2π

e−
1
2 x2
«„

1√
2π

e−
1
2 y2
«„

1√
2π

e−
1
2 z2
«

=
1

(2π)3/2
e−

1
2
(x2+y2+z2)

=
1

(2π)3/2
e−

1
2 ‖�v‖2 .

In other words, the probability density function of 	v de-
pends only on its norm and not on any angles such as
θ or φ. In conclusion, by finding where the ray 	v inter-
sects the unit sphere, we obtain a sample from a uniform
distribution on the surface of the unit sphere. �

Question 8. Assume the Earth is perfectly spherical and
you are standing somewhere on its surface. You travel
exactly 1 mile south, then 1 mile east, then 1 mile north.
Surprisingly, you find yourself back at the starting point.
If you are not at the North Pole, where can you possibly
be?!

Answer: There are infinitely many locations, aside from
the North Pole, that have this property.

Somewhere near the South Pole, there is a latitude
that has a circumference of one mile. In other words, if
you are at this latitude and start walking east (or west),
in one mile you will be back exactly where you started
from. If you instead start at some point one mile north
of this latitude, your journey will take you one mile south
to this special latitude, then one mile east “around the
globe” and finally one mile north right back to wherever
you started from. Moreover, there are infinitely many
points on the Earth that are one mile north of this special
latitude, where you could start your journey and eventu-
ally end up exactly where you started.
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We are still not finished! There are infinitely many spe-
cial latitudes as well; namely, you could start at any point
one mile north of the latitude that has a circumference of
1/k miles, where k is a positive integer. Your journey will
take you one mile south to this special latitude, then one
mile east looping “around the globe” k times, and finally
one mile north right back to where you started from. �

Question 9. Solve the Ornstein-Uhlenbeck SDE

drt = λ(θ − rt)dt + σdWt, (1.12)

with λ > 0, which is used, e.g., in the Vasicek model for
interest rates.

Answer: We can rewrite (1.12) as

drt + λrtdt = λθdt + σdWt. (1.13)

By multiplying (1.13) on both sides by the integrating
factor eλt, we obtain that

eλtdrt + λeλtrtdt = λθeλtdt + σeλtdWt,

which is equivalent to

d
“
eλtrt

”
= λθeλtdt + σeλtdWt. (1.14)

By integrating (1.14) from 0 to t, it follows that

eλtrt − r0 = λθ

Z t

0

eλsds + σ

Z t

0

eλsdWs

= θ
“
eλt − 1

”
+ σ

Z t

0

eλsdWs .

By solving for rt, we find that the solution to the Ornstein-
Uhlenbeck SDE is

rt = e−λtr0 + e−λtθ
“
eλt − 1

”
+ σe−λt

Z t

0

eλsdWs

= e−λtr0 + θ
“
1− e−λt

”
+ σ

Z t

0

e−λ(t−s)dWs.
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Note that the process rt is mean reverting to θ, regard-
less of the starting point r0. To see this, recall that the
expected value of the stochastic integral

R t

0
f(s)dWs of a

non-random function f(s) is 0. Then,

E

»Z t

0

e−λ(t−s)dWs

–
= 0,

and therefore

E[rt] = e−λtr0 + θ
“
1− e−λt

”
.

Thus,
lim

t→∞
E[rt] = θ. �

Question 10. Find all the integer solutions of the equa-
tion

x3 + y3 = 2013.

Answer: The equation has no integer solutions.
The challenge in this problem comes from the fact that

we can write the equation as

(x + y)(x2 − xy + y2) = 3 · 11 · 61,

which means that x + y has 16 possible values which are
the positive and negative divisors of 2013 = 3 ·11·61. This
would lead to a long–winded solution.

However, there is a straightforward way to see that the
equation has no integer solutions, by looking at residuals
modulo 9.

Note that 2013 ≡ 6 (mod 9); here,

a ≡ b (mod m) ⇐⇒ m | (a− b),

where m > 1 is a positive integer and a and b are integers.
Furthermore:

• if a ≡ 0 (mod 3), then a3 ≡ 0 (mod 9);
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• if a ≡ 1 (mod 3), then a3 ≡ 1 (mod 9);
• if a ≡ 2 (mod 3), then a3 ≡ 8 (mod 9).

This means that x3 + y3 can only be equal to 0, 1, 2,
7 or 8 modulo 9, and cannot be equal to 2013 for any
integers x and y since 2013 ≡ 6 (mod 9). �

Question 11. Let X and Y be standard normal variables
with joint normal distribution with correlation ρ. Find the
expectation

E [sgn(X)sgn(Y )] ,

where sgn(·) is the sign function given by sgn(x) = 1, if
x > 0, sgn(x) = −1, if x < 0, and sgn(0) = 0.

Answer: If ρ = 1, then

E [sgn(X)sgn(Y )] = E
ˆ
sgn(Z)2

˜
= E [1] = 1, (1.15)

where Z is the standard normal variable, and, if ρ = −1,

E [sgn(X)sgn(Y )] = E
ˆ−sgn(Z)2

˜
= E [−1] = −1.

(1.16)
If ρ ∈ (−1, 1), we obtain that

E [sgn(X)sgn(Y )]

= P [X > 0, Y > 0] + P [X < 0, Y < 0]

− P [X > 0, Y < 0]− P [X < 0, Y > 0] .(1.17)

Note that

P [X > 0, Y > 0] = P [X < 0, Y < 0] ; (1.18)

P [X > 0, Y < 0] = P [X < 0, Y > 0] , (1.19)

due to symmetry, and therefore (1.17) can be written us-
ing (1.18–1.19) as

E [sgn(X)sgn(Y )]

= 2 P [X > 0, Y > 0]− 2P [X > 0, Y < 0](1.20)
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Moreover,

P [X > 0, Y > 0] + P [X < 0, Y < 0]

+ P [X > 0, Y < 0] + P [X < 0, Y > 0]

= 1. (1.21)

Using (1.18–1.19) in (1.21), we find that

2P [X > 0, Y > 0] + 2 P [X > 0, Y < 0] = 1

and therefore

P [X > 0, Y < 0] =
1

2
− P [X > 0, Y > 0] . (1.22)

By substituting (1.22) in (1.20), we obtain that

E [sgn(X)sgn(Y )] = 4P [X > 0, Y > 0] − 1. (1.23)

To compute P [X > 0, Y > 0], recall that, if X and Y
are standard normal variables with joint normal distribu-
tion with correlation ρ, then there exist two independent
standard normal variables Z1 and Z2 such that„

X
Y

«
=

„
Z1

ρZ1 +
p

1− ρ2Z2

«
. (1.24)

Let eρ =
p

1− ρ2. From (1.24), we obtain that

Y = ρX + eρZ, (1.25)

where we denoted Z2 by Z for simplicity. Note that X =
Z1 and Z = Z2 are independent standard normals.

Then, from (1.25) and using the fact that X and Z are
independent standard normal variables, it follows that

P [X > 0, Y > 0]

= P [X > 0, ρX + eρZ > 0]

= P

»
X > 0, Z > −ρeρX

–
=

1

2π

Z ∞

0

Z ∞

− ρ
eρ

x

e−
x2+z2

2 dzdx. (1.26)
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We use a polar coordinates change of variables to com-
pute the integral (1.26). Let

x = r cos(θ); z = r sin(θ),

and recall that

dzdx = rdθdr. (1.27)

Note that

−ρeρ x < z < ∞

⇐⇒ −ρeρ < tan(θ) < ∞

⇐⇒ α < θ <
π

2
, (1.28)

where

α = arctan

„
−ρeρ
«

.

Note that α is the signed angle between the x-axis and
the straight line ρx + eρz = 0 on the (x, z) plane.

From (1.26) and using (1.27) and (1.28), we obtain that

P [X > 0, Y > 0]

=
1

2π

Z ∞

0

Z ∞

− ρ
eρ

x

e−
x2+z2

2 dzdx

=
1

2π

Z ∞

0

Z π
2

α

e−
r2

2 r dθdr

=
1

2π

“π

2
− α

”Z ∞

0

re−
r2

2 dr

=

„
1

4
− α

2π

« „
−e−

r2

2

«˛̨̨̨∞
0

=
1

4
− α

2π
. (1.29)
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From (1.23) and (1.29), we conclude that

E [sgn(X)sgn(Y )] = 4 P [X > 0, Y > 0]− 1

= 4

„
1

4
− α

2π

«
− 1

= −2α

π
. (1.30)

Formulas (1.15) and (1.16) for E [sgn(X)sgn(Y )] cor-
responding to ρ = 1 and ρ = −1, respectively, can be
obtained from the general formula (1.30) as limiting cases
when ρ goes to 1 and to −1. For example,

lim
ρ↘−1

E [sgn(X)sgn(Y )]

= lim
ρ↘−1

„
−2α

π

«
= − 2

π
lim

ρ↘−1
arctan

„
−ρeρ
«

= − 2

π
lim

ρ↘−1
arctan

 
− ρp

1− ρ2

!

= − 2

π
· π

2
= −1,

which is the same as (1.16), since

lim
ρ↘−1

 
− ρp

1− ρ2

!
= ∞

and therefore

lim
ρ↘−1

arctan

 
− ρp

1− ρ2

!
=

π

2
. �
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Question 12. How do you create a long Gamma, short
vega options trading strategy?

Answer: Both Gamma and vega are highest for options
around at–the–money (ATM). However, the Gamma of
ATM options is higher for options with shorter maturity
(i.e., for short–dated options), while the vega of ATM op-
tions is higher for longer maturity options (i.e., for long–
dated options); see Figure 1.1 and Figure 1.2, respectively.
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Figure 1.1: Dependence of Gamma on time to maturity

A trader who buys short–dated ATM options and sells
the same number of long–dated ATM options will be long
Gamma and short vega.

Note that calls and puts with the same strike have
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Figure 1.2: Dependence of vega on time to maturity

the same Gamma and vega, a consequence of the Put–
Call parity, so you can take positions in either call or put
options.

Also, the long Gamma, short vega portfolio can be
made Delta–neutral by taking an appropriate position in
the underlying asset. The delta of short–dated ATM op-
tions is smaller than the delta of long–dated ATM options.
Then, the delta of the long Gamma, short vega portfolio
is negative and therefore the trader will have to purchase
units of the underlying asset in order to make the portfolio
Delta–neutral. �

Question 13. Let Xt and Yt be geometric Brownian



26 CHAPTER 1. FIRST LOOK: 15 QUESTIONS

motions driven by

dXt

Xt
= μXdt + σXdWt; (1.31)

dYt

Yt
= μY dt + σY dBt, (1.32)

where Wt and Bt are correlated Brownian motions with
constant correlation ρ. Show that

Zt =
Xt

Yt

is also a geometric Brownian motion and determine its
drift and volatility coefficients.

Answer: Let
f(x, y) =

x

y
.

By applying Itô’s lemma to Zt = Xt
Yt

, we obtain that

dZt = d

„
Xt

Yt

«
= d f(Xt, Yt)

=
∂f

∂x
(Xt, Yt) dXt +

∂f

∂y
(Xt, Yt) dYt

+
1

2

∂2f

∂x2
(Xt, Yt) d[X ]t +

1

2

∂2f

∂y2
(Xt, Yt) d[Y ]t

+
∂2f

∂x∂y
(Xt, Yt) d[X,Y ]t.

Note that

∂f

∂x
(x, y) =

1

y
;

∂f

∂y
(x, y) = − x

y2
;

∂2f

∂x2
(x, y) = 0;

∂2f

∂y2
(x, y) =

2x

y3
;

∂2f

∂x∂y
(x, y) = − 1

y2

and therefore

dZt =
1

Yt
dXt−Xt

Y 2
t

dYt+
Xt

Y 3
t

d[Y ]t− 1

Y 2
t

d[X,Y ]t. (1.33)
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Since

d[Y ]t = σ2
Y Y 2

t dt;

d[X,Y ]t = ρσXσY XtYtdt,

it follows from (1.33) that

dZt =
1

Yt
dXt − Xt

Y 2
t

dYt +
Xt

Yt
σ2

Y dt− Xt

Yt
ρσXσY dt

=
Xt

Yt

dXt

Xt
− Xt

Yt

dYt

Yt
+

Xt

Yt
σ2

Y dt − Xt

Yt
ρσXσY dt

= Zt
dXt

Xt
− Zt

dYt

Yt
+ Ztσ

2
Y dt− ZtρσXσY dt,

which can be written as

dZt

Zt
=

dXt

Xt
− dYt

Yt
+
`
σ2

Y − ρσXσY

´
dt. (1.34)

By substituting (1.31) and (1.32) in (1.34), we obtain that

dZt

Zt
= (μXdt + σXdWt)− (μY dt + σY dBt)

+
`
σ2

Y − ρσXσY

´
dt

=
`
μX − μY + σ2

Y − ρσXσY

´
dt

+(σXdWt − σY dBt)

= μZ dt + (σXdWt − σY dBt) , (1.35)

where
μZ = μX − μY + σ2

Y − ρσXσY .

Note that fWt given by

dfWt =
σXdWt − σY dBtp
σ2

X − 2ρσXσY + σ2
Y

is a Brownian motion, and let

σZ =
q

σ2
X − 2ρσXσY + σ2

Y .
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Then,
σXdWt − σY dBt = σZdfWt, (1.36)

and we conclude from (1.35) and (1.36) that Zt satisfies
the SDE

dZt

Zt
= μZ dt + σZ dfWt.

Thus, Zt is a geometric Brownian motion with drift μZ

and volatility σZ, where

μZ = μX − μY + σ2
Y − ρσXσY ;

σZ =
q

σ2
X − 2ρσXσY + σ2

Y . �

Question 14. Find the k–th largest element in an un-
sorted array. Assume that k is always valid, i.e., k ≥ 1
and k is less than or equal to the length of the array.

Note: You are looking for the k–th largest element in the
sorted order, not the k–th distinct element of the array.

Example 1:

Input: [3,2,1,5,6,4] and k = 2

Output: 5

Example 2:

Input: [3,2,3,1,2,4,5,5,6] and k = 4

Output: 4

Answer:
Solution 1: Use a max heap data structure as follows
(sample code in C++):

class Solution {

public:

int findKthLargest(vector<int>& nums, int k) {

std::priority_queue<int> max_heap;

for (int i = 0; i < nums.size(); ++i){

max_heap.push(nums[i]);
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}

int j = 0;

while (j++ < k - 1){

max_heap.pop();

}

return max_heap.top();

}

};

Solution 2: Use a quick selection algorithm as follows
(sample code in C++):

class Solution {

public:

int findKthLargest(vector<int>& nums, int k) {

const int size_n = nums.size();

int left = 0, right = size_n;

while (left < right) {

int i = left, j = right - 1, pivot = nums[left];

while(i <= j) {

while (i <= j && nums[i] >= pivot) i++;

while (i <= j && nums[j] < pivot) j--;

if (i < j)

swap(nums[i++], nums[j--]);

}

swap(nums[left], nums[j]);

if (j == k - 1) return nums[j];

if (j < k - 1) left = j + 1;

else right = j;

}

}

};

Question 15. Given an array nums, there is a sliding
window of size k which is moving from the very left of
the array to the very right of the array. You can only
see the k numbers in the window. Each time the sliding
window moves right by one position. Assume that k is
always valid, i.e., k ≥ 1 and k is less than or equal to the
size of the input array size for non-empty arrays.
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Write an algorithm that returns the maximum of the slid-
ing window.

Example:

Input: nums = [1,3,-1,-3,5,3,6,7], and k = 3

Output: [3,3,5,5,6,7]

Explanation:

Window Position Max

-------------------------- -----

[1 3 -1] -3 5 3 6 7 3

1 [3 -1 -3] 5 3 6 7 3

1 3 [-1 -3 5] 3 6 7 5

1 3 -1 [-3 5 3] 6 7 5

1 3 -1 -3 [5 3 6] 7 6

1 3 -1 -3 5 [3 6 7] 7

Answer: Use a deque (double-ended queue) data structure
as follows (sample code in C++):

class Solution {
public:

vector<int> maxSlidingWindow(vector<int>& nums, int k) {
int n = nums.size();
vector<int> res;
if (n == 0) return res;
if (k == 1) return nums;

deque<int> myDeque;
for (int i = 0; i < n; ++i){
if (myDeque.empty()) myDeque.push_back(i);
else {
if (i - myDeque.front() == k) myDeque.pop_front();

if (i - myDeque.front() < k){
if (nums[myDeque.back()] > nums[i]) myDeque.push_back(i);
if (nums[myDeque.back()] < nums[i]){
while (!myDeque.empty() && nums[i] > nums[myDeque.back()]){
myDeque.pop_back();

}
myDeque.push_back(i);
}

}

}
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if (i >= k-1) res.push_back(nums[myDeque.front()]);
}
return res;
}
};

.


